Integrating Factors for Second-order ODEs
نویسندگان
چکیده
A systematic algorithm for building integrating factors of the form μ(x, y), μ(x, y) or μ(y, y) for second order ODEs is presented. The algorithm can determine the existence and explicit form of the integrating factors themselves without solving any differential equations, except for a linear ODE in one subcase of the μ(x, y) problem. Examples of ODEs not having point symmetries are shown to be solvable using this algorithm. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A comparison between this implementation and other computer algebra ODE-solvers in tackling non-linear examples from Kamke’s book is shown.
منابع مشابه
λ-Symmetry method and the Prelle-Singer method for third-order differential equations
In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...
متن کاملFinding Liouvillian first integrals of rational ODEs of any order in finite terms
It is known, due to Mordukhai-Boltovski, Ritt, Prelle, Singer, Christopher and others, that if a given rational ODE has a Liouvillian first integral then the corresponding integrating factor of the ODE must be of a very special form of a product of powers and exponents of irreducible polynomials. These results lead to a partial algorithm for finding Liouvillian first integrals. However, there a...
متن کاملIntegrating Factors and ODE Patterns
A systematic algorithm for building integrating factors of the form μ(x, y′) or μ(y, y′) for nonlinear second order ODEs is presented. When such an integrating factor exists, the scheme returns the integrating factor itself, without solving any differential equations. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A comparison between this impl...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملA Novel Finite Difference Method of Order Three for the Third Order Boundary Value Problem in ODEs
In this article we have developed third order exact finite difference method for the numerical solution of third order boundary value problems. We constructed our numerical technique without change in structure of the coefficient matrix of the second-order method in cite{Pand}. We have discussed convergence of the proposed method. Numerical experiments on model test problems approves the simply...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 27 شماره
صفحات -
تاریخ انتشار 1999